Name: _

Section: _

The Order of Operations Matter!

- When reading an expression, you must follow **PEMDAS**:
 - 1. Group any expression in Parenthesis (or any other grouping symbols)
 - 2. attach Exponents
 - 3. apply Multiplication and Division as you read Left to Right
 - 4. apply Addition and Subtraction as you read from Left to Right.
- You already know $2 + 1^3 = 3$ whereas $(2 + 1)^3 = 27$. Thus $x + y^3 \neq (x + y)^3$. Similarly, $2 * 3^2 = 18$ whereas $(2 * 3)^2 = 36$. Thus xy^2 does not equal $(xy)^2 = x^2 * y^2$.
- These ideas also show that $5 x^2/x + y = 5 x + y$ does not equal $(5 x^2)/(x + y) = \frac{5 x^2}{x + y}$.
- To *rewrite* any expression or equation, you must apply a valid rule of algebra.

Rules for Fractions

Let $b, e \neq 0$ in the following.

Rules for Exponents

Let a, b > 0 in the following.

$$a^{r} \cdot a^{s} = a^{r+s} = a^{(r+s)}$$
 $a^{r-s} = \frac{a'}{a^{s}}$

 $(a^r)^s = a^{r \cdot s} = a^{(r \cdot s)}$ $a^{-s} = \frac{1}{a^s}$

 $(a \cdot b)^r = a^r \cdot b^r \qquad \qquad a^s = \frac{1}{a^{-s}}$

 $\sqrt[r]{a \cdot b} = \sqrt[r]{a} \cdot \sqrt[r]{b}$ $\sqrt[r]{a} = a^{1/r}$

Name: _

Section: ____

Rules for Rewriting *Equations*

- To rewrite an equation (something with an = sign), you can
 - Add (or subtract) the same real number to (from) both sides of the equation.
 - Multiply (or divide) both sides of the equation by the same **nonzero** real number.
- Because a variable (like x) can take on any real number, *including* 0, multiplying or dividing both sides of an equation by a variable *might* change the equation.
- Think about why *multiplying* by a variable might *add* a solution and why *dividing* by a variable might *eliminate* a solution. How can you tell if this happens?

Graphs of Common Functions

