Approximating Roots

Stephen Flood

$$f(x) = 0 \iff x^3 = 3 \iff x = \sqrt[3]{3}$$

$$f(x) = 0 \iff x^3 = 3 \iff x = \sqrt[3]{3}$$

To approximate $\sqrt[3]{3}$ find the *zeros* of f

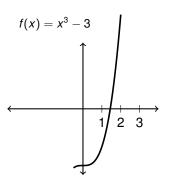
$$f(x) = 0 \iff x^3 = 3 \iff x = \sqrt[3]{3}$$

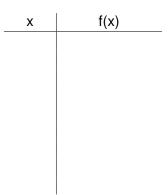
To approximate $\sqrt[3]{3}$ find the *zeros* of f

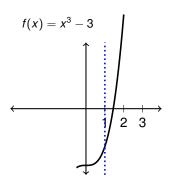
To do that, find a, b so that f(a) < 0 and f(b) > 0

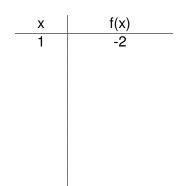
$$f(x) = 0 \iff x^3 = 3 \iff x = \sqrt[3]{3}$$

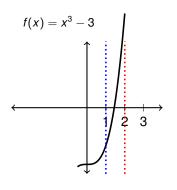
To approximate $\sqrt[3]{3}$ find the *zeros* of f

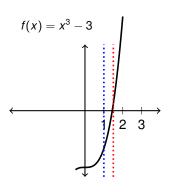

To do that, find a, b so that f(a) < 0 and f(b) > 0

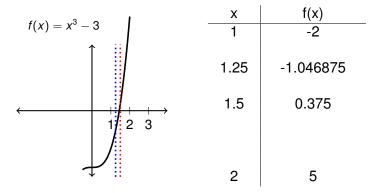

By the intermediate value theorem, we will have

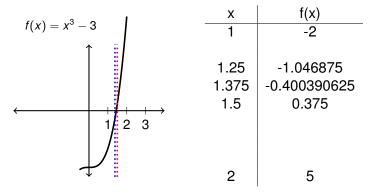

$$a < x = \sqrt[3]{3} < b$$

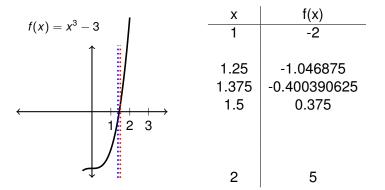

giving us *upper* and *lower* bounds for the root $x = \sqrt[3]{3}$

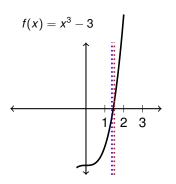









X	f(x) -2
1	-2
_	_


f(x) -2
0.375
0.373

In other words, $\sqrt[3]{3}$ is between 1.375 and 1.5

X	f(x)
1	-2
1.25 1.375 1.5	-1.046875 -0.400390625 0.375
2	5

In other words, $\sqrt[3]{3}$ is between 1.375 and 1.5

In fact,
$$\sqrt[3]{3} = 1.442...$$