class Matrix:
#### Linear Algebra Methods ####
def scale(self,i,r,**arguments):
if "verbose" in arguments and arguments["verbose"]:
if abs(r)>1:
print("Scaling row " + str(i+1) + " by " +str (r) )
elif abs(r)<1:
print("Scaling row " + str(i+1) + " by 1/"+ str(1/r))
elif r == -1:
print("Negating row " + str(i+1) )
elif r == 1:
print("Leaving row " + str(i+1) + " unchanged")
for j in range(self.n):
self.Array[i][j] = r * self.Array[i][j]
def interchange(self,i1,i2,**arguments):
if "verbose" in arguments and arguments["verbose"]:
print("Interchanging rows " + str( i1 +1) + " and " + str( i2+1))
for j in range(self.n):
temp = self.Array[i2][j]
self.Array[i2][j] = self.Array[i1][j]
self.Array[i1][j] = temp
def replacement(self,i1, i2, r,**arguments):
if "verbose" in arguments and arguments["verbose"]:
print("Replacing row " + str(i1+1) + " with " +str ( r) + " times row " + str( i2 +1) )
for j in range(self.n):
self.Array[i1][j] = self.Array[i1][j] + r*self.Array[i2][j]
#### Support Methods ####
def __init__(self,Array):
self.Array = Array
self.m = len(Array)
if self.m == 0:
print("ERROR: Empty array")
self.n = len(Array[0])
for i in range(len(Array)):
if len(Array[i]) != self.n:
print("ERROR: inconsistent array dimension")
def elt(self,i,j):
if (i<0) or (i>self.m) or (j<0) or (j>self.n):
print("ERROR: invalid dimension", i, " vs ,", j, "in")
self.print()
return self.Array[i][j]
def row_lnze_index(self,i):
''' Returns index of row LNZE if it exists.
Otherwise, returns -1'''
for j in range(self.n):
if self.elt(i,j) != 0: return j
return -1
def print(self):
# print("[",end="")
# for i in range(self.m):
# print(self.Array[i],end="")
# if i != self.m-1: print(",")
# print("]",end="")
for i in range(self.m):
print(self.Array[i])
print(".")
# def print(self):
# print("[",end="")
# for i in range(self.m):
# print(self.Array[i],end="")
# if i != self.m-1: print(",")
# print("]",end="")
def print_latex(self):
print("\\begin{bmatrix}")
for i in range(self.m):
for j in range(self.n):
print(self.Array[i][j],end=" ")
if j != self.n-1:
print("& ",end="")
elif i!= self.m-1:
print( "\\\\ \n",end="" )
print("\n\\end{bmatrix}\n")
import random
def random_matrix_of_rank(m,n,rank):
if (1>m) or (1>n):
print("Error: invalid dimensions", m, n)
return Matrix([[]])
if (rank>n) or (rank>m):
print("Error: rank cannot exceed m and n", m, n)
return Matrix([[]])
elif 1>rank:
return Matrix([ [0 for i in range(n) ] for j in range(m) ] )
## Pick the columns to contain pivots
## Always put a pivot in the first column
if rank==1:
pivot_cols=[]
else:
pivot_cols = random.sample( [i for i in range(1,n)] ,rank-1 )
pivot_cols.append(0)
pivot_cols.sort()
## Intialize an empty array
values = [0, 0, 0, 0, 0, 0, 1, 1, 1, -1,-1, 2,-2,3,-3]
Array = [ [ 0 for i in range(n) ] for j in range(m) ]
for row,col in enumerate(pivot_cols):
if (row>m) or (col>n):
print("Error")
return Matrix([[]])
Array[row][col] = 1
for row , lnze in enumerate(pivot_cols):
# lnze = pivot_cols[row]
for col in range(lnze+1,n):
if not(col in pivot_cols):
Array[row][col] = random.choice(values)
M = Matrix(Array)
num_ops = 2*(n+m+2)
row_operations = random.choices(["replacement","interchange","scaling"],k=num_ops)
for operation in row_operations:
if operation == "replacement":
r = random.choice([-1,1])
i1,i2 = random.sample([i for i in range(m)],k=2)
M.replacement(i1,i2,r)
elif operation == "interchange":
i1,i2 = random.sample([i for i in range(m)],k=2)
M.interchange(i1,i2)
elif operation == "scaling":
i= random.choice([i for i in range(m)])
r = random.choice([-2,-1,1,2])
M.scale(i,r)
return M
def RREF_classic( A: Matrix , **arguments):
''' Row reduces the matrix using classical Gaussian elimination'''
if "verbose" in arguments and arguments["verbose"]:
print("Reducing matrix using classical Gaussian elimination")
A.print()
for i in range(A.m):
# Flip rows as needed to ensure we have the leftmost LNZE
for i2 in range(i+1,A.m):
if ( -1 < A.row_lnze_index(i2) < A.row_lnze_index(i) ) or ( A.row_lnze_index(i) == -1 ) :
A.interchange(i,i2,**arguments)
A.print()
# Store column of current LNZE
j = A.row_lnze_index(i)
if j>-1: # If there is a nonzero pivot
# Convert the LNZE to 1
A.scale(i,1/A.elt(i,j),**arguments)
A.print()
# Use LNZE to clear out all other rows
for i2 in range(A.m):
if i2 != i and A.elt(i2,j)!=0 :
r = - A.elt(i2,j)/A.elt(i,j)
A.replacement(i2,i,r,**arguments)
A.print()
def gcd(a, b):
'''Calculate the Greatest Common Divisor of a and b.
FROM https://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python#:~:text=The%20greatest%20common%20divisor%20(GCD)%20of%20a%20and%20b%20is
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
'''
while b:
a, b = b, a%b
return a
def RREF_lcm( A: Matrix , **arguments):
''' Uses Gaussian elimination modified to avoid division
by scaling the row to be replaced so it is a multiple
of the row being used.
'''
if "verbose" in arguments and arguments["verbose"]:
print("Reducing matrix using GCM's")
A.print()
for i in range(A.m):
# Flip rows as needed to ensure we have the leftmost LNZE
for i2 in range(i+1,A.m):
if ( -1 < A.row_lnze_index(i2) < A.row_lnze_index(i) ) or ( A.row_lnze_index(i) == -1 ) :
A.interchange(i,i2,**arguments)
A.print()
# Store column of current LNZE
j = A.row_lnze_index(i)
if j >-1 :# If there is a nonzero pivot
# Scale row to be replaced to be a multiple of the row used.
for i2 in range(A.m):
if i2 != i and A.elt(i2,j)!=0 :
target_lnze = A.elt(i2,j)
A.scale(i2, A.elt(i,j)/gcd(A.elt(i,j),target_lnze),**arguments)
A.print()
A.replacement(i2, i, -target_lnze/gcd(A.elt(i,j),target_lnze), **arguments)
A.print()
for i in range(A.m):
j = A.row_lnze_index(i)
if j>-1 :
if A.elt(i,j)!=0 :
A.scale(i,1/(A.elt(i,j)),**arguments)
A.print()
def RREF_euclidean( A: Matrix , **arguments):
''' Row reduces the matrix using the Euclidean algorithm to get Echelon Form.'''
if "verbose" in arguments and arguments["verbose"]:
print("Reducing matrix using Euclidean algorithm:")
print("At each stage")
print("1. Sort columns by pivot index and size")
print("2. Use the smallest magnitude pivot to reduce its position in all later rows, but without introducing fractions")
print("3. Once a pivot has cleared out later rows, scale it to be 1")
print("4. Once the matrix is in echelon form, then clear up")
print(".")
A.print()
current_row = 0 # Start with row zero
done_with_row = False
while current_row < A.m:
# Rearrange rows by LNZE
for i in range(A.m):
# Flip rows as needed to ensure we have the leftmost LNZE
for i2 in range(i+1,A.m):
if ( -1 < A.row_lnze_index(i2) < A.row_lnze_index(i) ) :
A.interchange(i,i2,**arguments)
A.print()
elif ( (A.row_lnze_index(i) == -1) and (A.row_lnze_index(i2)>-1) ):
A.interchange(i,i2,**arguments)
A.print()
# Sort rows by ABS VALUE of the LNZE itself
for i in range(A.m):
for i2 in range(i+1,A.m):
if (A.row_lnze_index(i) != -1 ) and (A.row_lnze_index(i) == A.row_lnze_index(i2)):
if ( abs(A.elt(i,A.row_lnze_index(i))) > abs(A.elt(i2,A.row_lnze_index(i)))):
A.interchange(i,i2,**arguments)
A.print()
# Store column of current LNZE
j = A.row_lnze_index(current_row)
if j == -1:
## Since we have sorted the rows, if the current row has no LNZE,
## we are at the bottom of the matrix
break
elif j > -1:
# Use the current nonzero pivot to reduce (and maybe zero out)
# its value in later rows
done_with_row = True
for i2 in range(current_row+1,A.m):
if i2 != current_row and A.elt(i2,j)!=0 :
remainder = A.elt(i2,j) % A.elt(current_row,j)
if( remainder ) == 0:
# print("divisible")
r = -A.elt(i2,j)/A.elt(current_row,j)
else:
done_with_row = False
r = -(A.elt(i2,j)-remainder)/A.elt(current_row,j)
A.replacement(i2,current_row,r,**arguments)
A.print()
if done_with_row :
# print("Rescaling row")
A.scale( current_row, 1/A.elt(current_row,j) , **arguments)
A.print()
current_row = current_row +1
print("Matrix is in Echelon form")
print("Now finding Reduced Echelon form\n")
for current_row in range(A.m):
j = A.row_lnze_index(current_row)
if j>-1:
for i2 in range(current_row):
if A.elt(i2,j) != 0:
A.replacement(i2,current_row, -A.elt(i2,j),**arguments)
A.print()
print("Matrix is now in Reduced Echelon Form")
m = random.randint(2,4)
n = random.randint(m+1,8)
rank = min( random.randint(int(n/2),n), m, n)
A = random_matrix_of_rank(m,n,rank)
B = Matrix([[A.Array[i][j] for j in range(n)] for i in range(m)])
C = Matrix([[A.Array[i][j] for j in range(n)] for i in range(m)])
#print("===================")
#
#RREF_classic(A, verbose=True)
#
#print("===================")
#
#RREF_lcm(B, verbose=True)
#
#print("===================")
RREF_euclidean(C, verbose=True)
#print("===================")