Name: $\qquad$ Section: $\qquad$

## Statements about Relations

- Define: A relation $R$ on $A$ is reflexive if and only if $(\forall x \in A)[\langle x, x\rangle \in R]$
- Define: A relation $R$ on $A$ is symmetric if and only if $(\forall x, y \in A)[$ if $\langle x, y\rangle \in R$, then $\langle y, x\rangle \in R]$
- Define: A relation $R$ on $A$ is transitive if and only if $(\forall x, y, z \in A)[$ if $\langle x, y\rangle \in R \wedge\langle y, z\rangle \in R$, then $\langle x, z\rangle \in R]$


## Describing Relations

A certain simplified family tree $T$ is given on the right. We say that $b$ is a daughter of $a$, because there is a line down from $a$ to $b$.


1. Define on $T$ a relation $C$, by $\langle x, y\rangle \in C$ if and only if $y$ is a daughter of $x$.

List the elements of $C$ in roster notation. Is $C$ symmetric? Is $C$ reflexive? Is $C$ transitive?
2. Define on $T$ a relation $S$, by $\langle x, y\rangle \in S$ if and only if $x$ and $y$ have the same parents.

List the elements of $S$ in roster notation. Is $S$ symmetric? Is $S$ reflexive? Is $S$ transitive?
3. Define on $T$ a relation $D$, by $\langle x, y\rangle \in D$ if and only if $y$ is a descendent of $x$.

List the elements of $D$ in roster notation. Is $D$ symmetric? Is $D$ reflexive? Is $D$ transitive?

Name: $\qquad$ Section: $\qquad$

## Proofs about Relations

For each of the following, either give a general proof that the given relation has the specified property, or give a counterexample that shows that it does not have the property.

1. On $\mathbb{N}$, define a relation $R$ by $\langle n, m\rangle \in R$ if and only if $n+m$ is a multiple of 3
(a) Is the relation reflexive? Give a proof or counterexample.
(b) Is the relation symmetric? Give a proof or counterexample.
(c) Is the relation transitive? Give a proof or counterexample.
2. On the set $\mathbb{N}$, define a relation $S$ by $\langle n, m\rangle \in R$ if and only if $n=m^{2}$.
(a) Is the relation reflexive? Give a proof or counterexample.
(b) Is the relation symmetric? Give a proof or counterexample.
(c) Is the relation transitive? Give a proof or counterexample.
3. On the set of all logical propositions, define a relation $I$ by $\langle P, Q\rangle \in I$ if and only if $P \equiv Q$.
(a) Is the relation reflexive? Give a proof or counterexample.
(b) Is the relation symmetric? Give a proof or counterexample.
(c) Is the relation transitive? Give a proof or counterexample.
