Stephen Flood

Math 1131, Class 25

Stephen Flood Newton's Method

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Many science and engineering problems can be phrased as

"Solve f(x) = 0 "

Strategy: Make a first guess, and use linear approximations to iteratively improve it.

ヘロン 人間 とくほ とくほ とう

3

Question

What is $\sqrt[3]{2}$?

Solving

$$x^3 = 20$$

is the same as solving

$$x^3 - 20 = 0$$

Let $f(x) = x^3 - 20$. Then $f'(x) = 3x^2$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Near a_0 approximate $f(x) \approx L_{a_0}(x) = f'(a_0)(x - a_0) + f(a_0)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Near a_0 approximate $f(x) \approx L_{a_0}(x) = f'(a_0)(x - a_0) + f(a_0)$

Where is this linearization zero?

$$L_{a_0}(x) = 0$$

 $f'(a_0)(x - a_0) + f(a_0) = 0$
 $x = a_0 - rac{f(a_0)}{f'(a_0)}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Near a_0 approximate $f(x) \approx L_{a_0}(x) = f'(a_0)(x - a_0) + f(a_0)$

Where is this linearization zero?

$$L_{a_0}(x) = 0$$

 $f'(a_0)(x-a_0) + f(a_0) = 0$
 $x = a_0 - rac{f(a_0)}{f'(a_0)}$

Our next **guess** is that $f(x) \approx 0$ at $a_1 = a_0 - \frac{f(a_0)}{f'(a_0)}$

"Rinse and repeat"

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○





















