Newton's Method

Stephen Flood

Math 1131, Class 25

Solving Equations

Many science and engineering problems can be phrased as

$$
\text { "Solve } f(x)=0 \text { " }
$$

Strategy: Make a first guess, and use linear approximations to iteratively improve it.

An Example

Question

What is $\sqrt[3]{2}$?

Solving

$$
x^{3}=20
$$

is the same as solving

$$
x^{3}-20=0
$$

Let $f(x)=x^{3}-20$. Then $f^{\prime}(x)=3 x^{2}$.

Start at some guess a_{0}. We want $f(x)=0$.

Start at some guess a_{0}. We want $f(x)=0$.
Near a_{0} approximate $f(x) \approx L_{a_{0}}(x)=f^{\prime}\left(a_{0}\right)\left(x-a_{0}\right)+f\left(a_{0}\right)$

Start at some guess a_{0}. We want $f(x)=0$.
Near a_{0} approximate $f(x) \approx L_{a_{0}}(x)=f^{\prime}\left(a_{0}\right)\left(x-a_{0}\right)+f\left(a_{0}\right)$
Where is this linearization zero?

$$
\begin{aligned}
L_{a_{0}}(x) & =0 \\
f^{\prime}\left(a_{0}\right)\left(x-a_{0}\right)+f\left(a_{0}\right) & =0 \\
x & =a_{0}-\frac{f\left(a_{0}\right)}{f^{\prime}\left(a_{0}\right)}
\end{aligned}
$$

Start at some guess a_{0}. We want $f(x)=0$.
Near a_{0} approximate $f(x) \approx L_{a_{0}}(x)=f^{\prime}\left(a_{0}\right)\left(x-a_{0}\right)+f\left(a_{0}\right)$
Where is this linearization zero?

$$
\begin{aligned}
L_{a_{0}}(x) & =0 \\
f^{\prime}\left(a_{0}\right)\left(x-a_{0}\right)+f\left(a_{0}\right) & =0
\end{aligned}
$$

$$
x=a_{0}-\frac{f\left(a_{0}\right)}{f^{\prime}\left(a_{0}\right)}
$$

Our next guess is that $f(x) \approx 0$ at $a_{1}=a_{0}-\frac{f\left(a_{0}\right)}{f^{\prime}\left(a_{0}\right)}$
"Rinse and repeat"

Newton's Method

Newton's Method

Newton's Method

Newton's Method

Newton's Method

Newton's Method

Newton's Method

