Stephen Flood

Math 1131, Class 25

Stephen Flood Newton's Method

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

#### Many science and engineering problems can be phrased as

"Solve f(x) = 0 "

**Strategy:** Make a first guess, and use linear approximations to iteratively improve it.

ヘロン 人間 とくほ とくほ とう

3

#### Question

What is  $\sqrt[3]{2}$ ?

Solving

$$x^3 = 20$$

is the same as solving

$$x^3 - 20 = 0$$

Let  $f(x) = x^3 - 20$ . Then  $f'(x) = 3x^2$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Near  $a_0$  approximate  $f(x) \approx L_{a_0}(x) = f'(a_0)(x - a_0) + f(a_0)$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Near  $a_0$  approximate  $f(x) \approx L_{a_0}(x) = f'(a_0)(x - a_0) + f(a_0)$ 

Where is this linearization zero?

$$L_{a_0}(x) = 0$$
  
 $f'(a_0)(x - a_0) + f(a_0) = 0$   
 $x = a_0 - rac{f(a_0)}{f'(a_0)}$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Near  $a_0$  approximate  $f(x) \approx L_{a_0}(x) = f'(a_0)(x - a_0) + f(a_0)$ 

Where is this linearization zero?

$$L_{a_0}(x) = 0$$
  
 $f'(a_0)(x-a_0) + f(a_0) = 0$   
 $x = a_0 - rac{f(a_0)}{f'(a_0)}$ 

Our next **guess** is that  $f(x) \approx 0$  at  $a_1 = a_0 - \frac{f(a_0)}{f'(a_0)}$ 

"Rinse and repeat"

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○





















