Name: \qquad Section: \qquad

If $n \neq-1, \quad \frac{d}{d x} \frac{x^{n+1}}{n+1}=x^{n} \quad$ so the antiderivative of $\quad x^{n} \quad$ is $\quad \frac{x^{n+1}}{n+1}+C$

Because $\quad \frac{d}{d x} \ln (|x|)=\frac{1}{x} \quad$ the antiderivative of $\quad \frac{1}{x} \quad$ is $\ln (|x|)+C$

Because $\quad \frac{d}{d x} e^{x}=e^{x} \quad$ the antiderivative of $\quad e^{x} \quad$ is $\quad e^{x}+C$

Because $\quad \frac{d}{d x}(-\cos (x))=\sin (x) \quad$ the antiderivative of $\quad \sin (x) \quad$ is $\quad-\cos (x)+C$

Because

$$
\frac{d}{d x} \sin (x)=\cos (x)
$$

the antiderivative of
$\cos (x) \quad$ is $\quad \sin (x)+C$

Because $\quad \frac{d}{d x} \tan (x)=\sec ^{2}(x) \quad$ the antiderivative of $\sec ^{2}(x) \quad$ is $\tan (x)+C$

Because $\quad \frac{d}{d x} \sec (x)=\sec (x) \tan (x) \quad$ the antiderivative of $\quad \sec (x) \tan (x) \quad$ is $\quad \sec (x)+C$

Because $\quad \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}} \quad$ the antiderivative of $\quad \frac{1}{1+x^{2}} \quad$ is $\tan ^{-1}(x)+C$

Because $\quad \frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}} \quad$ the antiderivative of $\quad \frac{1}{\sqrt{1-x^{2}}} \quad$ is $\sin ^{-1}(x)+C$

