1.5 = 6r)3

Name:

Section:

You have 10 minutes to complete the quiz. Please show all work, and then write your answer on the line provided.

- 1. Suppose your company makes an investment of \$10,000 which accrues interest at a fixed 5% interest per year, compounded quarterly.
 - (a) Write a function F(t) which gives the value of the loan after t years

$$F(t) = 10,000 \cdot \left(1 + \frac{0.05}{4}\right)^{4t}$$

1 pt

(b) Use laws of exponents to write F(t) as a base b exponential function $(F(t) = P \cdot b^t)$.

$$F(t) = 10000 \cdot (1.0125)^{4t}$$

$$= 10000 \cdot ((1.0125)^{4})^{t}$$

$$= 10000 \cdot (1.050945)^{t}$$

Spl

(c) What is your effective annual interest rate?

5.0945% effective APR

10

Name:

Section: _

P(100)=11

- 2. Suppose you find that you can sell 100 pins at \$11 per pin, and 200 pins at \$1 per pin.
 - (a) Assuming that demand is linear, find a function for the price p(x) as a function of the number of units demanded.

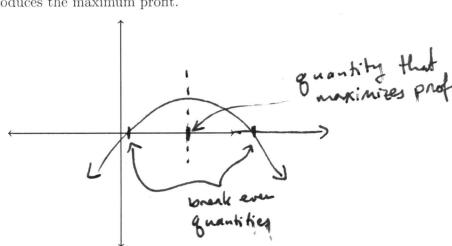
$$p(x) = m(x-x,)+y,$$

$$M = \frac{\Delta y}{\Delta x} = \frac{11-1}{100-200} = \frac{10}{-100} = \frac{-1}{10}$$

$$P(x) = \frac{-1}{10} (x - 100) + 11 = \frac{-1}{10} \times + \frac{100}{10} + 11$$
(b) Find a function for the revenue of selling x units.

$$R(x) = p \cdot x = \left(\frac{-1}{10}x + 21\right) \cdot x$$

$$R(x) = \frac{-1}{10}x^2 + 21x$$


(c) If your cost function is C(x) = 10 + 18x, find a function for the profit of selling x units.

$$P(x) = P(x) - (x) = \left(\frac{1}{10}x^2 + 21x\right) - \left(10 + 18x\right)$$
$$= \frac{-1}{10}x^2 + 21x - 10 - 18x = \left(-\frac{1}{10}x^2 + 3x - 10\right)$$

1pt

(d) Sketch the profit function. Label the break-even quantities and the quantity that produces the maximum profit.

