Name: \qquad Section: \qquad

Lines

- Slope $=\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- Slope Intercept Form: $f(x)=m x+b$
where m is the slope and b is the y-intercept.
- Point Slope form: $f(x)=m\left(x-x_{1}\right)+y_{1}$
where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.

Quadratic functions

- Have the form $f(x)=a x^{2}+b x+c$
- The curve opens up if $a>0$, and the curve opens down if $a<0$.
- The vertex is located at (h, k) where $h=-\frac{b}{2 a}$ and $k=c-\frac{b^{2}}{4 a}$
- The quadratic formula: $f(x)=0$ if and only if $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Mathematical Modeling

Goal: Capture patterns in precise, mathematical lanugage.
Types of Models:

- Analytical: Turn a simple/simplified description of the pattern into a mathematical formula.

This includes word problems where you must translate words into a formula.

- Regression/Statistical: You try to find a formula that fits some measured data well.

This is the source for most equations that seem to come out of nowhere.

The Process of Modeling

