Instructions:

- This exam contains 13 pages. When we begin, check you have one of each page.
- You will have 75 minutes to complete the exam.

1/

- Please show all work, and then write your answer on the line provided.

 In order to receive full credit, solutions must be complete, logical and understandable.
- Turn smart phones, cell phones, and other electronic devices off now!

Academic Honesty:

By writing my name below, I agree that all the work which appears on this exam is entirely my own.

I will not look at other peoples' work, and I will not communicate with anyone else about the exam.

I will not use any calculators, notes, etc.

I understand that violating the above carries *serious consequences*, both moral and academic.

Printed Name: Key	Signature:
Section:	

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	10	9	8	5	10	8	10	10	8	14	8	100
Score:												

- 1. For each of the following equalities, assume that x and y stand for some real numbers, and that all denominators are non-zero.
 - (a) [5 points] Is the statement $\frac{1}{y} + \frac{1}{x}$ always equal to $\frac{x+y}{xy}$? Give a proof or counterexample.

Proof:
$$\frac{x}{x}$$
 $\frac{1}{y}$ $\frac{1}{x}$ $\frac{x}{y}$ $\frac{x}{xy}$ $\frac{x}{xy}$ $\frac{x}{xy}$ $\frac{x}{xy}$

(b) [5 points] Is the statement $\sqrt{x^2 + 4}$ always equal to x + 2? Give a proof or counterexample.

No

counterxample: if
$$x=2$$
,
$$\sqrt{2^2+4} = \sqrt{8}$$

$$8ut$$

$$2+2 = 4$$

2. (a) [4 points] Rewrite the following using interval notation:

1.
$$[-2,4) \cup (3,8]$$

2pt

2. $[-2,4) \cap (3,8]$

201

- (b) [5 points]
 - 1. Sketch a graph that passes the vertical line test

2. Sketch a graph that fails the vertical line test

3. Which of the above two graphs defines a function? why?

- 3. [8 points] Suppose you want to open an on-demand 3D printing business.
 - (a) You top choice printer has a fixed cost of \$1,300 and the plastic costs \$2 per unit produced. Write an equation for C(x), the cost of producing x units.

$$C(x) = 1300 + 2x$$

2pt

(b) If each unit sells for \$12, give an equation for R(x), the income from selling x units.

2pt

(c) Find the quantities where you "break even".

Break even when
$$C(x) = R(x)$$

$$1300 + 2x = 12x$$

$$1300 = 10x$$

$$x = 130$$

(d) Sketch the graphs of cost and revenue, and indicate graphically where you "break even"

2pt

4. [5 points] Find the equation for a linear function going through (3,6) and (7,8). Write your answer both in point slope form and in slope intercept form.

Zet

$$M = \frac{97:58}{7un} = \frac{8-6}{7-3} = \frac{2}{4} = \frac{1}{2}$$

$$f(x) = \frac{1}{2}(x-3) + 6$$
 — point slope from

$$=\frac{1}{2}x-\frac{3}{2}+6$$

$$= \frac{1}{2} \times - \frac{3}{2} + \frac{12}{2}$$

$$f(x) = \frac{1}{2}x + \frac{9}{2}$$

Slope intercept form

Page 5 of 13

5. [10 points] Suppose that f(x) is defined using the following graph.

- 1 et each
- (a) Compute f(0) and f(3).

$$f(3) = 0$$

(b) Find the domain and range of f.

(c) For what x is f(x) = 1?

When
$$x = -3, -1, 2, 4$$

(d) For what x is f(x) < 1?

6. [8 points] (a) Complete the square to rewrite $f(x) = x^2 - 12x + 34$ in the form $a(x - h)^2 + k$.

$$f(x) = x^{2} - 12x + \frac{36}{36} - \frac{36}{36} + 34$$

$$= (x - 6)(x - 6) - \frac{36}{36} + 34$$

$$= (x - 6)^{2} - 2$$

$$= 2pt$$

Page 7 of 13

7. (a) [5 points] Find the domain of the following function.

$$f(x) = \sqrt{1 - x}$$

Give your answer using interval notation.

(b) [5 points] Find the domain of the following function.

$$f(x) = \frac{\sqrt{2x+2}}{x-2}$$

Give your answer using interval notation.

Page 8 of 13

- 8. Inverse Functions
 - (a) [5 points] Let $f(x) = 4x^3 + 2$. Find a formula for $f^{-1}(x)$.

Bind
$$x$$
 s.t. $y = 4x^3 + 2$
 $y-2 = 4x^3$
 $y = x^3$
 $x = \sqrt[3]{\frac{y-2}{4}} = f^{-1}(y)$
So $f^{-1}(x) = \sqrt[3]{\frac{x-2}{4}}$

(b) [5 points] Suppose that f is defined using the following table:

X	1	3	5	9
f(x)	3	5	1	6

Compute $f^{-1}(3)$, $f^{-1}(1)$, and $f^{-1}(6)$.

$$f^{-1}(3) = 1$$
 means $f(\frac{1}{3}) = 3$
 $f^{-1}(1) = \frac{5}{5}$ means $f(\frac{5}{5}) = 1$
 $f^{-1}(6) = \frac{9}{5}$ means $f(\frac{9}{3}) = 6$

9. Polynomial Functions

(a) [8 points] Solve the following inequality. Give your answer in interval notation.

$$(x-4)^2(x+1)^3(x-2) > 0$$

@ check intervals

$$f(5) = (pos)^{2}(pos)^{3}(pos) = pos$$

4 pto for answer (-00,-1) u (2,4) u (4,00)

(intervals & brackets)

10. Rational Functions

(a) [8 points] Solve the following inequality. Give your answer in interval notation.

$$2x+4 \le 0$$

$$2x+4 = 0$$

$$2x + 4 = 0$$

$$2x = -4$$

$$x = -2$$

2pA

$$f(-3) = \frac{-6+4}{-3} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$f(0) = \frac{0+4}{0-1} = \text{Neg}$$

$$f(2) = \frac{4+4}{2-1} = \text{pos}$$

2pt interval 1pt brockets.

(b) [4 points] Let identify any horizontal and vertical asymptotes for the following function

$$f(x) = \frac{2x+4}{x-1}$$

vertical asymptotes

- · can't simplify
- · DNE when X-1=0

When X = # 1

=) vertical asymptok

at x = 1

horitontal asymptotes

when x is bigg $f(x) \approx \frac{2x}{x} = 2$

=> horizontal asymptote at y=2

(c) [2 points] Use your (b) and (c) to sketch the graph of $f(x) = \frac{2x+4}{x-1}$

11. [8 points] Use polynomial division to rewrite $\frac{x^3 + 4x^2 - x + 2}{x^2 + x + 2}$ in the form $\frac{p}{d} = q + \frac{r}{d}$

$$x+3 + \frac{-6x-4}{x^2+x+2}$$

$$= \chi + 3 + \frac{(-1)(6x+4)}{\chi^2 + x + 2}$$

$$= x+3 - \frac{6x+4}{x^2+x+2}$$